
Rainbow Tables: Past, Present, and Future

James Nobis (quel)

http://www.freerainbowtables.com

DFW Security Professionals, 2011

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Overview

Personal bio

Ethics

Export law

Applications summary

Background information

History from 1978 to present

Technical and theory 1978 - ?

Applications and details

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Personal bio

What is freerainbowtables.com?

How much money do you make?

Who is this guy?

Official day job title: Senior System Administrator / Developer
*nix - Linux, OpenBSD, NetBSD
coder in several languages
amateur crypto hobbyist
BS Computer Science
not in the sec industry

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Ethics

Is this legal?

Yes!

You are making money helping crack passwords!

Why are you helping the bad guys?

If it can be done, should it done?

equip itsec community with tools
educate people to salt hashes er or hash at all
basic theory is well established in published work
basic implementation source was public before us

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Export law

Failure to comply is effective equivalent to espionage

Obama changed the rules

public publication 2010-06-25
rules went effective 2010-08-24
open source is no longer exempt
closed source even freeware almost always requires a full BIS
review

740.17 (b)(1) - doesn’t apply - this is cryptanalytic

Key size doesn’t matter except in 1 case!

740.17 (b)(2) - software covered

source code
modifiable crypto

only for effective key size greater 56bits close source
only for effective key size greater 64bits open source

penetration testing
cryptanalytic

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Applications summary

Block cipher keys

DES
rc4 used by Microsoft Office - see Elcomsoft

Don’t use 40-bit keys for 128-bit RC4

Password hashes

Salt your hashes!
Security auditing

Password policy enforcement
migrating unsalted hashes to SSHA
Windows hashes aren’t going anywhere

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Background information

Keyspace

Brute force

Types of cryptographic attack

Hashes

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Keyspace Ciphers

keySpace = 2keyLength

DES 56bit = 256

RC4 128bit = 2128

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Keyspace Passwords

keySpace =
maxPassLen∑

i=minPassLen

charSetLeni
[1]

=
charSetLenmaxPassLen+1 − charSetLenminPassLen

charSetLen − 1

loweralpha = [a− z ]

charSetLen = 26

maxPassLen = 10

2610+1 − 101

26− 1
=

2611 − 10

25
≈ 146813779479510 ≈ 247.061

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Brute force

OpenSSL 0.9.8p
i686 linux on a dual core Intel T2080 @1.73Ghz

16 size blocks: 3005871 md5’s in 3.01s
16 size blocks: 6840081 des cbc’s in 3.00s
16 size blocks: 6307485 des-ecb’s in 3.00s

x86 64 linux on an AMD Phenom II X6 1090T 3.2-3.6Ghz

16 size blocks: 8331538 md5’s in 3.01s
16 size blocks: 13213076 des cbc’s in 2.99s
16 size blocks: 13100170 des-ecb’s in 3.00s

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Brute force 2

247.061/ 8331538 / 3.01 ≈ 68 days

256/13100170 / 3.00 / ≈ 21221 days ≈ 58 years

247.061 ∗ 16 ≈ 2136 TiB

256 ∗ 7 bytes = 524288 TiB

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Types of cryptographic attack

Ciphertext-only (COA)

no extra knowledge

Known-plaintext (KPA)

knowledge of some plaintexts and their ciphertexs

Chosen-plaintext (CPA)

plaintext may be selected

Chosen-ciphertext (CCA)

plaintext or ciphertext may be select

James Nobis (quel) Rainbow Tables: Past, Present, and Future



DES

Initial Permutation

16 rounds

Final Permutation

Modes
Electronic CodeBook (ECB)

encrypt each block by itself

Cipher-block chaining (CBC)

Initialization Vector (IV)
each block of plaintext XOR with previous ciphertext block

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hashes

MD4

3 rounds
128-bit output - 16 bytes

MD5

4 rounds
128-bit output - 16 bytes

SHA1

80 rounds
160-bit output - 20 bytes

James Nobis (quel) Rainbow Tables: Past, Present, and Future



History from 1978 to present

Probabilistic forms of time and memory tradeoffs

Hellman tables

Rainbow tables

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hellman tables

”A Cryptanalytic Time - Memory Trade-Off” [2]

by Martin Hellman
published 1980

pre-computation N work

Chosen Plaintext Attack (CPA)

ECB allows also Ciphertext Only Attack (COA)

Reduction function

memory costs more than cpu time

fixed length chains

128-bit keys are the minimum for any data

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables

Philippe Oechslin 2003 [5]

Fixed length chains

less memory and time than previous methods

chains may collide without merging

higher success rates possible with less memory

few tables

reduction function per column

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Technical and theory from 1978 - ?

Hellman tables

Rainbow tables

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hellman Tables Technical 1

Starting Points (SPs) chosen randomly

End Points (EPs)

Generate chains

Discard all intermediate points

Sort on EP

Reduction function

Hellman suggests dropping the last 8 bits of ciphertext
64-bit to 56-bit

lookups

cpu N ˆ (2/3)
memory N ˆ (2/3)

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hellman Tables Technical 2

If f(*) is a random function mapping the set 1, 2, ..., N onto
itself, and the key K is chosen uniformly from the same set, the
probability of success is bounded by

P(S) ≥ (1 / N)
m∑

i=1

t−1∑
j=0

[(N − it)/N]j+1

brute force point: mt2 = N

m = numChains

t = chainLength

N = keySpace

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hellman Tables Technical 3

For N ˆ (2/3) time complexity use:

m = t = N ˆ (1/3)

P(S) is approximately N ˆ (-1/3) for a single table

Generate N ˆ (1/3) tables or more

(2ˆ 56)ˆ (1/3) is a min 416127 tables

False Alarm

a given ith element of a chain with multiple inverses
Expected false alarms

E (F ) ≤
m∑

i=1

t∑
j=1

j/N

= mt(t + 1)/2N

≤ 50% total cryptanalytic attack

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 1

Original Hellman Formula as revised by Oechslin

Ptable ≥
1

N

m∑
i=1

t−1∑
j=0

(1− it

N
)j+1

Psuccess ≥ 1−

1− 1

N

m∑
i=1

t−1∑
j=0

(1− it

N
)j+1

�l

Diminishing returns on the success rate for more tables
Cost of time and memory rapidly grows
reduction function 1 to t - 1, where t is chain length [5]
Does this all look and sound familiar? It should

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 2

rainbow chains may collide without merging

if the collision is at the same point in the chains it’s a merge

chance that 2 specific colliding chains will merge

Pcollision merges =
1

t

The chance of a merge for the entire table is given as a
consequence of perfect tables and explained later

False alarms may be up 125% of the cryptanalytic attack [6]

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 3

Oechslin gives us the success rate of this new approach
for m chains of length t

Ptable = 1−
t∏

i=1

(1− mi

N
)

where m1 = m

mn+1 = N(1− e−
mn
N )

He refers in [5] and [6] as this being exact but it is not
This success rate probability is an average case
The lower bound is the original Hellman table success rate

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 4

For your sanity and mine lets rewrite the formulas [1]
success depends on predicting the expected unique chains [5]
success rate of a single table

euc(1) = chainCount

euc(i) = keySpace(1− e−
euc(i−1)
keySpace )

tableSuccessRate ≈ 1−
chainLength∏

i=1

(1− euc(i)

keySpace
)

totalSuccessRate ≈ 1−
numTables∏

i=1

1− tableSuccessRatei

≈ 1− (1− tableSuccessRate)numTables

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 5

Perfect Tables
general definition of perfect

no duplicate chains
no merging chains

differences of perfect

some do not generate replacement chains
some require specific selection which merging chain is kept

pick the chain that merges where i is closest to chainLen

Free Rainbow Tables definition

all general requirements
replacement chains generated for all discarded
no selection of the merging chain to discard

not ideal but has little to no impact on success rate
increases false alarm chain walks
ideal selection may create more costly false alarms

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Tables Technical 6

Perfect Tables 2
A single perfect table is too expensive to generate

Oechslin gives us Nt (keyspace * chainLen) [5]

247 = 140737488355328

247 ∗ 40000 = 5629499534213120000

≈ 262.2877

For a given keyspace multiple perfect tables

lower success rate for each one
Oechslin estimates max success rate of a table as 86% [6]

If we assume 86% table success rate

1− ((1− 0.86) ∗ (1− 0.86)) = 98.04%

1− ((1− 0.86) ∗ (1− 0.86) ∗ (1− 0.86)) = 99.7256%

1− ((1− 0.86) ∗ (1− 0.86) ∗ (1− 0.86) ∗ (1− 0.86)) = 99.961584%

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Applications and details

Overview of some well known implementations

Overview of some of the file formats

Detailed focus on Free Rainbow Tables

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Rainbow Table Implementations

Ophcrack 1.0a by Philippe Oechslin

2004-07
2005-03-31 Ophcrack 2.0
2009-07-29 Ophcrack 3.3.1

RainbowCrack 1.0 by Zhu Shuanglei

2003-09-09
2003-11-21 RainbowCrack 1.2 - last release with source

Winrtgen as part of Cain & Abel

Free Rainbow Tables

2006-12-06 first DistRTgen release
2007-01-17 first linux release
2007-12-02 Perfect table generation

James Nobis (quel) Rainbow Tables: Past, Present, and Future



File formats

.rt - 2003

fixed 8 byte SPs and 8 byte EPs per chain

Ophcrack - 2004

fixed 4 byte sequential SPs and 2 byte EPs
prefix index 4 bytes per [9]
prefix method first noted [6]

.rti - RT Improved - 2008

prefix index
8 bytes per chain
11 bytes per index

.rtc - RT Compact - 2009 August

.rti2 - RT Improved v2 - 2009 June

.rti2 - with headers - I have code to finish

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Free Rainbow Tables

Generation

BOINC

Work Unit (WU) assignment
WU computation
WU upload
WU validation
WU assimilation
Table perfecting
Table completion

Using the tables

Distribution

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Generation 1

Picking a table set

user feedback and needs
algorithm or code change testing
regenerating non-sequential table sets for optimal packing
rivalries

project-rainbowcrack.com has this set at 96% success that’s
awful, 99.9% lets go

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Generation 2

Generation Parameters

A day of idle machines is better than generating poor tables
totalSuccessRate = 99.9%
pick chainLen

balance generation time and cryptanalysis time
balance total disk use
40,000 has worked well for CPU only generate/crack
20,000 at double the numChains for the first table for speed

pick number of tables

for the totalSuccessRate 4 is optimal
The 86% success per table is optimistic from Oechslin [6]
even at 86% success 3 tables at best yields 99.725%

pick character set
pick passLen
calculate ExpectedUniqueChains
pick algorithm - minor impact on stepSpeed

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Generation 3

totalSuccessRate = 99.9%

chainLen = 40, 000

charSet = loweralpha[a− z ]

charSetLen = 26

minPwLen = 1

maxPwLen = 10

keySpace = 146813779479510

chainCount = 46417863961

euc = 6338323552 => euc = 6338500000

totaleuc = 25354000000

expectedTableSuccessRate = 1− (1− 6338500000

146813779479510
)40000

≈ 82.218060806682030987%

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Generation 4

expectedTableSuccessRate ≈ 82.21806080668203%

expectedTableSuccessRate ∗ 2 ≈ 96.83802638525142%

expectedTableSuccessRate ∗ 3 ≈ 99.43773977451665%

totalTableSuccessRate ≈ 99.90001922859634%

md5 loweralpha#1-10 0 actualSuccessRate ≈ 82.42099823126382%

md5 loweralpha#1-10 1 actualSuccessRate ≈ 82.49167591074124%

md5 loweralpha#1-10 2 actualSuccessRate ≈ 82.51509187185517%

md5 loweralpha#1-10 3 actualSuccessRate ' 82.40308898901675%

md5 loweralpha#1-10 [01] actualSuccessRate ≈ 96.92221139867314%

md5 loweralpha#1-10 [012] actualSuccessRate ≈ 99.46185149067949%

md5 loweralpha#1-10 actualSuccessRate ' 99.90530248570794%

James Nobis (quel) Rainbow Tables: Past, Present, and Future



BOINC 1

Work Unit (WU) assignment

parameters including start point ranges
500000 chains per WU for latest MD5 run
md5 loweralpha 1 10 2 40000 500000 27981500000
35100,35400,35700,36000,36300,36600,36900,37200,37500,37800
,38100,38400,38700,39000,39300,39600

WU computation

generate a chain for every start point
sequential start points
CPU

2-3 hours for 1 WU on a single core (MD5)

GPU

105 seconds GTX 470 x86 64 linux (MD5)
about 120 seconds on windows
yes it’s the same code and no I’m not in charge of windows
builds

James Nobis (quel) Rainbow Tables: Past, Present, and Future



BOINC 22

WU upload
completed WU 9,000,000 bytes = (8*2+2) * 500000

traditional rt 8 bytes for SP and 8 for EP
2 bytes for checkpoints

GPUs are fast
5,000,000 bytes is better than 9,000,000

sequential SPs - let the server add the SPs and sort

my upstream is awful (384kbps)

109 seconds per WU

WU validation

regeneration of some chains

James Nobis (quel) Rainbow Tables: Past, Present, and Future



BOINC 3

WU assimilation

combine WUs into parts

Table perfecting

adding parts into the table in progress
sort on end points
no duplicates to remove with sequential SPs
remove merges (identical EPs)

generate replacement chains

Table completion

convert to rti/rti2 format
upload to mirror seed
seed upload to primary mirror

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Using the tables

[quel@paranoia ] cat hashes.txt
2c678f2e67902fb8294e15f6d44cc3e1
b172647b25385aef84620de9b5d194ad

[quel@paranoia ] time ./rcracki mt -t 3 -l hashes.txt -o results.txt
/mnt/rainbow tables/freerainbowtables/md5/md5 loweralpha#1-
10 ?
Using 3 threads for pre-calculation and false alarm checking...
Found 194 rainbowtable files...

md5 loweralpha#1-10 0 40000x5284976 distrrtgen[p][i] 95.rti:
reading index... 19221191 bytes read, disk access time: 0.01 s
reading table... 42279808 bytes read, disk access time: 0.02 s
verifying the file... ok
searching for 2 hashes...
Pre-calculating hash 1 of 2.

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Using the tables 2

md5 loweralpha#1-10 1 40000x67108864 distrrtgen[p][i] 04.rti:
reading index... 243700963 bytes read, disk access time: 1.61 s
reading table... 536870912 bytes read, disk access time: 3.49 s
verifying the file... ok
searching for 2 hashes...
plaintext of 2c678f2e67902fb8294e15f6d44cc3e1 is kpcjdbsdr
cryptanalysis time: 0.87 s

md5 loweralpha#1-10 1 40000x67108864 distrrtgen[p][i] 17.rti:
reading index... 243706705 bytes read, disk access time: 1.64 s
reading table... 536870912 bytes read, disk access time: 3.31 s
verifying the file... ok
searching for 1 hash...
plaintext of b172647b25385aef84620de9b5d194ad is lytoyswacd
cryptanalysis time: 0.45 s

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Using the tables 3

plaintext found:
total disk access time:
total cryptanalysis time:
total pre-calculation time:
total chain walk step:
total false alarm:
total chain walk step due to false alarm:

2 of 2 (100.00%)
602.98 s
91.45 s
356.57 s
3199760004
55469
814610518

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Using the Tables 4

2c678f2e67902fb8294e15f6d44cc3e1

kpcjdbsdr

hex:6b70636a6462736472

b172647b25385aef84620de9b5d194ad

lytoyswacd

hex:6c79746f797377616364

real
user
sys

18m9.844s
22m12.171s
1m2.880s

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Distribution

A different trade off

fast
reliable
lots of space
cheap

seed source

mirrors

torrents

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Hybrids

hybrid2

each charset is a sub-keyspace
code is complete and deployed for CPUs
code is nearly complete for GPUs
next up ntlm [A-Z][a-z]{5}[a-z0-9]{2}[0-9]{1,3}

yes that’s length 9, 10, or 11!
at 99.9% success

give us feedback on what tablesets to do

full sub-keyspace support

allows the table to be ordered for faster attacks
theory and sample code exist - all on our forums
possibilities get fairly interesting

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Future

GPU - for cryptanalytic attack side

SSE2

balacing CPU v GPU

RTI2 with file headers - we’re nearly there

convert completed WU to rti2 prior to upload?

selecting best merge to discard

new system architecture for better resiliency

distribute verifications

James Nobis (quel) Rainbow Tables: Past, Present, and Future



You can help!

x86/x86 64 windows and linux users install BOINC
attach to the project

http://boinc.freerainbowtables.com/distrrtgen/

CUDA generation with current BOINC and video drivers

spread the word

donate

compute time
hosting
hardware
programming
testing
benchmarking
bug finding
bug fixing

James Nobis (quel) Rainbow Tables: Past, Present, and Future



FRT Links

http://www.freerainbowtables.com

http://gitorious.org/freerainbowtables-applications

http://rcracki.sourceforge.net

http://www.tbhost.eu

http://boinc.berkeley.edu

http://boinc.freerainbowtables.com/distrrtgen

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Non-FRT Links

http://www.cryptohaze.com

http://www.project-rainbowcrack.com

http://ophcrack.sourceforge.net

http://www.iacr.org

http://eprint.iacr.org/complete

http://www.acm.org

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Contact information

James Nobis (quel)

quel@freerainbowtables.com

http://www.freerainbowtables.com

GPG

pub 4096R/8B429E16 2010-02-05
934B 3013 6826 BF6B BE93 750A 8081 124C 8B42 9E16
uid James Nobis ¡quel@freerainbowtables.com¿
sub 4096g/0312862A 2010-02-05
sub 4096R/A35ECB2E 2010-02-05
sub 4096R/F7C0F683 2010-11-25

James Nobis (quel) Rainbow Tables: Past, Present, and Future



QA

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Sources

See my Passwords ˆ 10 page as LaTex and I ran out of time.

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Sources continued

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. 2nd ed. New York, USA : Wiley, 1996. Print.
Niels Ferguson and Bruce Schneier. Practical Cryptography. 1st
ed. New York: Wiley, 2003.Print.
Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno.
Cryptography Engineering: Design Principles and Practical
Applications. Indianapolis, IN: Wiley, 2010. Print.

James Nobis (quel) Rainbow Tables: Past, Present, and Future



OpenSSL timing data collection

openssl-0.9.8p.tar.gz

ECB: ./openssl speed -evp des-ecb

James Nobis (quel) Rainbow Tables: Past, Present, and Future



OpenSSL timing data detailed

OpenSSL 0.9.8p
i686 linux on a dual core Intel T2080 @1.73Ghz

16 size blocks: 3005871 md5’s in 3.01s
16 size blocks: 6307485 des-ecb’s in 3.00s
256 size blocks: 418564 des-ecb’s in 2.99s
1024 size blocks: 104909 des-ecb’s in 3.00s
8192 size blocks: 13119 des-ecb’s in 3.00s

x86 64 linux on an AMD Phenom II X6 1090T @3.2Ghz -
3.6Ghz

16 size blocks: 8331538 md5’s in 3.01s
16 size blocks: 13100170 des-ecb’s in 3.00s
256 size blocks: 853165 des-ecb’s in 3.00s
1024 size blocks: 213891 des-ecb’s in 3.00s
8192 size blocks: 26740 des-ecb’s in 3.00s

James Nobis (quel) Rainbow Tables: Past, Present, and Future



Licensing

This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

James Nobis (quel) Rainbow Tables: Past, Present, and Future


